Mycelium/hyphae/src/vm.rs
Ava Affine 63aa66952f
All checks were successful
per-push tests / build (push) Successful in 34s
per-push tests / test-frontend (push) Successful in 31s
per-push tests / test-utility (push) Successful in 36s
per-push tests / test-backend (push) Successful in 30s
per-push tests / timed-decomposer-parse (push) Successful in 34s
Finished WIP (rebase this)
Signed-off-by: Ava Affine <ava@sunnypup.io>
2025-07-26 05:19:20 +00:00

490 lines
17 KiB
Rust

/* Mycelium Scheme
* Copyright (C) 2025 Ava Affine
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
use organelle::{Fraction, Number, Numeric};
use crate::hmap::QuickMap;
use crate::stackstack::StackStack;
use crate::instr as i;
use crate::util::{Operand, Program, Address};
use crate::heap::{Gc, Datum};
use core::cell::RefCell;
use alloc::vec;
use alloc::vec::Vec;
use alloc::sync::Arc;
use alloc::borrow::ToOwned;
use num::pow::Pow;
const NUM_OPERAND_REGISTERS: usize = 4;
pub struct VM {
// execution environment
pub stack: StackStack<Gc<Datum>>,
pub symtab: QuickMap<Operand>,
pub prog: Program,
pub fds: Vec<u64>,
pub traps: Vec<Arc<dyn Fn(&mut VM)>>,
// data registers
pub expr: Gc<Datum>,
pub oper: [Gc<Datum>; NUM_OPERAND_REGISTERS],
// control flow registers
pub retn: usize,
pub ictr: usize,
pub errr: Gc<Datum>,
// state
pub running: bool,
pub err_state: bool,
}
impl VM {
pub fn run_program(&mut self) {
if self.prog.0.len() < 1 {
self.running = false;
}
while self.ictr < self.prog.0.len() {
if self.err_state || !self.running {
return;
}
self.execute_instruction();
self.ictr += 1;
}
self.running = false;
}
#[inline(always)]
fn execute_instruction(&mut self) {
let instr = &self.prog.0[self.ictr].clone();
macro_rules! e {
( $err:expr ) => {
{
self.running = false;
self.err_state = true;
self.errr = Datum::String($err.as_bytes().to_vec()).into();
return;
}
}
}
// get or set according to addressing mode
macro_rules! access {
( $oper:expr ) => {
match $oper.0 {
Address::Expr => &self.expr,
Address::Oper1 => &self.oper[0],
Address::Oper2 => &self.oper[1],
Address::Oper3 => &self.oper[2],
Address::Oper4 => &self.oper[3],
Address::Stack => &self.stack[$oper.1],
Address::Numer => e!("cannot access constant numeric"),
Address::Instr => e!("bad access to instruction data"),
}
};
( $data:expr, $target:expr ) => {
match $data.0 {
Address::Expr => self.expr = $target,
Address::Oper1 => self.oper[0] = $target,
Address::Oper2 => self.oper[1] = $target,
Address::Oper3 => self.oper[2] = $target,
Address::Oper4 => self.oper[3] = $target,
_ => e!("attempted mutation of immutable address"),
}
}
}
macro_rules! do_jmp {
( $idx:expr ) => {
let Operand(Address::Instr, target) = instr.1[$idx] else {
e!("illegal argument to jump");
};
if target >= self.prog.0.len() {
e!("out of bounds jump caught");
}
self.ictr = target;
}
}
macro_rules! lr_oper {
( $in_type:ident, $oper:tt, $out_type:ident ) => {
self.expr = Datum::$out_type(match **access!(&instr.1[0]){
Datum::$in_type(l) => l,
_ => e!("illegal argument to instruction"),
} $oper match **access!(&instr.1[1]){
Datum::$in_type(l) => l,
_ => e!("illegal argument to instruction"),
}).into()
}
}
match instr.0 {
i::TRAP => {
let Operand(Address::Numer, idx) = instr.1[0] else {
e!("illegal argument to TRAP instruction");
};
if idx >= self.traps.len() {
e!("access to out of bounds trap!")
}
self.traps[idx].clone()(self)
},
// symtable ops
i::BIND => {
let Datum::String(ref tag) = **access!(&instr.1[0]) else {
e!("illegal argument to BIND instruction");
};
let tag = unsafe { str::from_utf8_unchecked(tag).to_owned() };
self.symtab.insert(tag, instr.1[1].clone());
},
i::UNBIND => {
let Datum::String(ref tag) = **access!(&instr.1[0]) else {
e!("illegal argument to UNBIND instruction");
};
let tag = unsafe { str::from_utf8_unchecked(tag) };
self.symtab.remove(tag);
},
i::BOUND => {
let Datum::String(ref tag) = **access!(&instr.1[0]) else {
e!("illegal argument to BOUND instruction");
};
let tag = unsafe { str::from_utf8_unchecked(tag) };
self.symtab.contains_key(tag);
},
// stack ops
i::PUSH => self.stack.push_current_stack(
access!(&instr.1[0]).clone()),
i::POP => _ = self.stack.pop_current_stack(),
i::ENTER => self.stack.add_stack(),
i::EXIT => self.stack.destroy_top_stack(),
// movement ops
i::LOAD => access!(&instr.1[1], access!(&instr.1[0]).clone()),
i::DUPL => access!(&instr.1[1], access!(&instr.1[0]).deep_copy()),
i::CLEAR => access!(&instr.1[0], Datum::None.into()),
// control flow ops
i::NOP => (),
i::HALT => self.running = false,
i::PANIC => {
self.running = false;
self.err_state = false;
self.errr = access!(&instr.1[0]).clone();
},
i::JMP => {
do_jmp!(0);
},
i::JMPIF => {
if let Datum::Bool(true) = *self.expr {
do_jmp!(0);
}
},
// boolean ops
i::EQ => self.expr =
Datum::Bool(*access!(&instr.1[0]) == *access!(&instr.1[1])).into(),
i::LT => lr_oper!(Number, <, Bool),
i::GT => lr_oper!(Number, >, Bool),
i::LTE => lr_oper!(Number, <=, Bool),
i::GTE => lr_oper!(Number, >=, Bool),
i::BOOL_NOT => {
self.expr = Datum::Bool(!{
let Datum::Bool(a) = *self.expr else {
e!("illegal argument to BOOL_NOT instruction");
};
a
}).into();
},
i::BOOL_AND => lr_oper!(Bool, &&, Bool),
i::BOOL_OR => lr_oper!(Bool, ||, Bool),
// char / byte ops
i::BYTE_AND => lr_oper!(Char, &, Char),
i::BYTE_OR => lr_oper!(Char, |, Char),
i::XOR => lr_oper!(Char, ^, Char),
i::BYTE_NOT => {
self.expr = Datum::Char(!{
let Datum::Char(a) = *self.expr else {
e!("illegal argument to BYTE_NOT instruction");
};
a
}).into();
},
// numeric ops
i::ADD => lr_oper!(Number, +, Number),
i::SUB => lr_oper!(Number, -, Number),
i::MUL => lr_oper!(Number, *, Number),
i::FDIV => lr_oper!(Number, /, Number),
i::IDIV => {
let Datum::Number(ref l) = **access!(&instr.1[0]) else {
e!("illegal argument to IDIV instruction");
};
let Datum::Number(ref r) = **access!(&instr.1[1]) else {
e!("illgal argument to IDIV instruction");
};
let Fraction(l, 1) = l.make_exact() else {
e!("integer division on non integer value");
};
let Fraction(r, 1) = r.make_exact() else {
e!("integer division on non integer value");
};
self.expr = Datum::Number(Number::Fra(Fraction(l / r, 1))).into();
},
i::POW => {
let Datum::Number(ref l) = **access!(&instr.1[0]) else {
e!("illegal argument to POW instruction");
};
let Datum::Number(ref r) = **access!(&instr.1[1]) else {
e!("illgal argument to POW instruction");
};
self.expr = Datum::Number(l.clone().pow(r.clone())).into();
},
i::INC => access!(&instr.1[0], {
if let Datum::Number(src) = **access!(&instr.1[0]) {
Datum::Number(src + Number::Fra(Fraction(1, 1))).into()
} else {
e!("illegal argument to INC instruction");
}
}),
i::DEC => access!(&instr.1[0], {
if let Datum::Number(src) = **access!(&instr.1[0]) {
Datum::Number(src - Number::Fra(Fraction(1, 1))).into()
} else {
e!("illegal argument to INC instruction");
}
}),
// byte/char to and from number conversions
i::CTON => access!(&instr.1[0], {
if let Datum::Char(schr) = **access!(&instr.1[0]) {
Datum::Number(Number::Fra(Fraction(schr as isize, 1))).into()
} else {
e!("illegal argument to INC instruction");
}
}),
i::NTOC => access!(&instr.1[0], {
if let Datum::Number(snum) = **access!(&instr.1[0]) {
let n = snum.make_inexact();
if !snum.is_exact() || n.0.fract() != 0.0 ||
n.0 > u8::MAX.into() || n.0 < 0.0 {
e!("input to NTOC cannot cleanly convert");
}
Datum::Char(n.0.trunc() as u64 as u8).into()
} else {
e!("illegal argument to INC instruction");
}
}),
i::NTOI => {
let src = access!(&instr.1[0]);
if let Datum::Number(snum) = **src {
access!(&instr.1[0],
Datum::Number(snum.make_inexact().into()).into())
}
},
i::NTOE => {
let src = access!(&instr.1[0]);
if let Datum::Number(snum) = **src {
access!(&instr.1[0], Datum::Number(snum.make_inexact().into())
.into())
}
},
i::CONST => access!(&instr.1[0], {
let Operand(Address::Numer, num) = instr.1[0] else {
e!("illegal argument to CONST instruction");
};
Datum::Number(Number::Fra(Fraction(num as isize, 1))).into()
}),
i::MKVEC => self.expr = Datum::Vector(RefCell::from(vec![])).into(),
i::MKBVEC => self.expr = Datum::ByteVector(RefCell::from(vec![])).into(),
i::INDEX => {
let Datum::Number(ref idx) = **access!(&instr.1[1]) else {
e!("illegal argument to INDEX instruction");
};
let idx = idx.make_inexact();
if !idx.is_exact() || idx.0.fract() != 0.0 {
e!("illegal argument to INDEX instruction");
}
let idx = idx.0.trunc() as usize;
match **access!(&instr.1[0]) {
Datum::Vector(ref v) => {
let a = (*v.borrow()[idx].clone()).clone();
self.expr = a.into();
},
Datum::ByteVector(ref bv) => {
let a = Datum::Char(bv.borrow()[idx]);
self.expr = a.into();
},
Datum::Cons(ref l) => self.expr = l[idx].clone(),
_ => e!("illegal argument to INDEX instruction")
};
},
i::LENGTH => match **access!(&instr.1[0]) {
Datum::Vector(ref v) => {
let a = Datum::Number(Number::Fra(Fraction(
v.borrow().len() as isize, 1)));
self.expr = a.into();
},
Datum::ByteVector(ref bv) => {
let a = Datum::Number(Number::Fra(Fraction(
bv.borrow().len() as isize, 1)));
self.expr = a.into();
},
Datum::Cons(ref l) => self.expr =
Datum::Number(Number::Fra(Fraction(l.len() as isize, 1)))
.into(),
_ => e!("illegal argument to LENGTH instruction"),
},
i::SUBSL => {
let Datum::Number(ref st) = **access!(&instr.1[1]) else {
e!("illegal argument to SUBSL instruction");
};
let Datum::Number(ref ed) = **access!(&instr.1[2]) else {
e!("illegal argument to SUBSL instruction");
};
if !st.is_exact() || !ed.is_exact() {
e!("illegal argument to SUBSL instruction");
}
let st = st.make_inexact();
let ed = ed.make_inexact();
if st.0.fract() != 0.0 || ed.0.fract() != 0.0 {
e!("SUBSL: FP precision error");
}
let st = st.0.trunc() as usize;
let ed = ed.0.trunc() as usize;
match **access!(&instr.1[0]) {
Datum::Vector(ref v) => {
let a = Datum::Vector(RefCell::from(v.borrow()[st..ed].to_vec()));
self.expr = a.into();
},
Datum::ByteVector(ref bv) => {
let a = Datum::ByteVector(RefCell::from(bv.borrow()[st..ed].to_vec()));
self.expr = a.into();
},
Datum::Cons(ref a) => self.expr =
Datum::Cons(a.subsl(st as isize, ed as isize)).into(),
_ => e!("illegal argument to SUBSL instruction")
};
}
i::INSER => {
let Datum::Number(ref idx) = **access!(&instr.1[2]) else {
e!("illegal argument to INSER instruction");
};
let idx = idx.make_inexact();
if !idx.is_exact() || idx.0.fract() != 0.0 {
e!("illegal argument to INSER instruction");
}
let idx = idx.0.trunc() as usize;
match **access!(&instr.1[0]) {
Datum::Vector(ref v) => {
v.borrow_mut()
.insert(idx, access!(&instr.1[1])
.deep_copy());
},
Datum::ByteVector(ref bv) => {
let Datum::Char(b) = **access!(&instr.1[1]) else {
e!("INSER instruction can only insert a byte into a bytevector");
};
bv.borrow_mut().insert(idx, b);
},
_ => e!("illegal argument to INSER instruction")
}
},
i::CAR => {
let Datum::Cons(ref arg) = **access!(&instr.1[0]) else {
e!("illegal argument to CAR instruction");
};
self.expr = arg.clone().0
.or(Some(Datum::None.into()))
.expect("CAR instruction option consistency");
},
i::CDR => {
let Datum::Cons(ref arg) = **access!(&instr.1[0]) else {
e!("illegal argument to CAR instruction");
};
self.expr = arg.clone().1
.or(Some(Datum::None.into()))
.expect("CDR instruction option consistency");
},
i::CONS => {
/* CONS BEHAVIOR
* L Datum is not list means create a new standard form list
* L Datum is list then append the second element to the first
*/
},
_ => {
e!("illegal instruction");
},
};
}
}